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A PERTURBATION ANALYSIS OF THE ATTENUATION AND
DISPERSION OF SURFACE WAVES
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ABSTRACT
A perturbation formulation of the equations of linear piezoelectricity is

obtained using a Green's function approach. Although the resulting equation

for the first perturbation of the eigenvalue strictly holds for real perturba- |
tions of real eigenvalues only, it is formally extended to the case of purely

imaginary perturbations of real eigenvalues. The extended equation is applied

in the calculation of the attenuation of surface waves due to the finite elec~
trical conductivity of thin metal films plated on the surface and air loading.
The influence of the viscosity of the air is included in the air loading

analysis, and the calculated attenuation increases accordingly. Since the %
metal films are thin compared with a wavelength, an approximate thin plate ;
conductivity equation is employed in the determination of the attenuation due ;
to the electrical conductivity of the films. The resulting attenuation is

obtained over a very large range of values of sheet conductivity. This is
accomplished by using the equation for the first perturbation of the eigenvalue
iteratively to determine the solution and attendant attenuation to any desired

degree of accuracy. The phase velocity dispersion curve due to the mechanical

effect of a thin film plated on a substrate is determined for relatively large

T

wavelengths by employing the perturbation equation iteratively, and excellent
agreement is obtained with the results of other more direct approaches. The i
calculations have been performed for an aluminum film on either ST-cut quartz

or Y-Z lithium niobate.
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1. Introduction

The attenuation of acoustic surface waves propagating along electroded
piezoelectric substrates arises from a number of different causes. In a manner
of speaking, these can be loosely categorized as substrate and electrode mater-
ial attenuation and air loading. The material attenuation is a result of
material viscosity and electrical and thermal conductivity. In the substrate
the viscosity is most important, the thermal conductivity of secondary import-
ance and the electrical conductivity is negligible. 1In the thin metal film the
electrical conductivity is of primary importance and the viscosity and thermal
conductivity are of secondary importance. 1In any event in this work the atten-
uation due to the finite electrical conductivity of the thin electrode plating
and air loading are determined. Measurements of attenuation due to a number
of the aforementioned causes have been madel_s.

The a£tenuation of surface waves due to air loading was first treated
analytically by Campbell and Jones6, who ignored the influence of the viscosity
of the air and, consequently, obtained values of attenuation below those
measured by slobodniks. Subsequently, Auld7 obtained results identical with
those of Ref.6 using his first order piezoelectric perturbation theory. The
attenuation of acoustic surface waves due to an adjacent semiconducting film
has been calculated byIngebrigtseany means of a perturbation procedure.

In this paper a piezoelectric perturbation theory is obtained from a
Green's function formulation9 of the equations of linear piezoelectricity
The resulting equation for the first perturbation of the eigenvalue is applied
in the determination of the attenuation of surface waves due to the finite
electrical conductivity of thin metal films plated on the surface and air load-
ing. The directly determined time attenuation is converted to spatial attenua-

tion. The resulting perturbation expression for the spatial attenuation is




similar to that of Auld7. In the case of attenuation due to air loading the
stress in the air due to the unperturbed surface wave displacement field is
inserted in the equation for the first perturbation of the eigenvalue. The
influence of viscosity is included in addition to fluid pressure in the analysis
of the air. As a consequence the calculated attenuation due to air loading is
larger than that of either Ref.6 or 7 and is in excellent agreement with the
measurements of Szabo and Slobodnikll for ST-cut quartz and Slobodnik5 for
lithium niobate.

Since the aforementioned metal films are thin compared with a wavelength,
an approximate thin plate conductivity equationl2 is obtained, which enables
the entire electrical conductivity effect of the plating to be treated as a
boundary condition at the surface of the substrate. This approximate thin plate
conductivity equation, but with a sign difference, has been employed by Adler13
in a treatment of semiconducting thin films. The attenuation resulting from
the conductivity of the thin film is determined by employing the aforementioned
thin plate conductivity equation in the equation for the first perturbation of
the eigenvalue in the usual manner. However, in this attenuation analysis the
perturbation equation is used successively to increment the solution at one
value of sheet conductivity from the previous solution at a nearby value of
sheet conductivity, because we are interested in the attenuation over a large
range of values of sheet conductivity. In addition, the perturbation equation
is used iteratively at a fixed value of sheet conductivity to determine the
solution and attendant attenuation to any desired degree of accuracy. With
this latter procedure small changes in the phase velocity are obtained as well
as the attenuation, However, we find that in this manner we are unable to
obtain the attenuation over an impractical range of values of sheet conductivity

corresponding to the maximum values of attenuation. We feel that this difficulty




arises because in that range the attenuation is too large for the perturbation
procedure we employ.

In addition to the foregoing the perturbation equation is applied in the
determination of the initial slope of the phase velocity dispersion curve due
to the mechanical effect of the thin film and excellent agreement is obtained
with other14 more direct approaches. Again, the iterative procedure is employed
to obtain considerably more than the initial slope of the dispersion curve from
the perturbation equation, and the results are shown to be extremely accurate.
Finally, it should be noted that the perturbation theory is applicable in the
determination of the attenuation due to all the aforementioned other causes,

In particular, the attenuation resulting from the material viscosity of the
substrate can readily be evaluated in the same manner using the results of

Lamb and Richter15 for quartz.

2. Piezoelectric Perturbation Theory

In this section we obtain a piezoelectric perturbation theory from a

: : 0 ; " B .
Green's function formulatlonl of linear piezoelectricity. To this end we

write the equations of linear piezoelectricity in the form16
T + TS, . = pi (2.1)
TS el y
e
-+ =
e T8 IRl B Wl k)
T = CE u + e
ij ijke’k, 2 T %kii® k0
D, = @, M ;=@ (2.3)
i~ Gk, 2 " Cik® ko -

where (2.1) and (2.2) are the stress equations of motion and charge equation
of electrostatics, respectively; and (2.3) are the linear piezoelectric con-
stitutive equations and Tij’ uj and D, denote the components of stress, mech-

anical displacement and electric displacement, respectively; p and ¢ denote
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the mass density and electric potential, respectively; C?jkz' ekij
denote the elastic, piezoelectric and dielectric constants, respectively.

The quantities Tij and Di denote volumetric mechanical and electrical perturba-
tion terms, respectively. 1In (2.1) - (2.3) we have employed the convention that
a comma followed by an index denotes partial differentiation with respect to a
space coordinate, the dot notation for differentiation with respect to time and
the summation convention for repeated tensor indices.

: 17 :
The equations for the Green's tensor corresponding to (2,1) - (2.3) may

be written in the form

T‘i’j,i + prG;?:_ 8- )83, (2.4)
.&i,i=-6(P-Q)GZ, (2.5)
'Ifgj 3 cijsz:, 2t ekijf?k’
> eiuci,z o eikfixk’ .53

where o, B = 1-4, P and Q denote the fixed field point and variable source
point, respectively, & is the Dirac delta function, Gg is the Kronecker delta,
G? and fa are the mechanical displacement Green's tensor and electric potential
Green's function plus cross terms, respectively, and the significance of the

remaining quantities in (2.4) - (2.6) is obvious from (2.1)- (2.3). In (2.4) -

(2.6) we have assumed that all variables have a time dependence of elwt. We

now make the same assumption in (2.1) - (2.3) and in the usual manner, from
(2.1) and (2.4), we form
e 2 m m 2_m m
T,. .+T,. . +pWu,)G, - (T,. .+pwW G, +8(P~- 6.u.] =0 247
i [( ij, i ij, i p J) 3 ( i3, 4 p j ( Q) J) 3 av (Q) y ( )

’

where m = 1~ 3 and all variables in (2.7) have spatial dependence only.
Employing the divergence theorem and using Egs. (2.2), (2.3), (2.5) and (2.6),

we obtain




m

v~ lale &
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a D = .B‘f‘cp] as(Q) +
J :] 1 2

S
J[T‘.’. ol e .f’“] av(Q) . (2.8)
Sy o Sy i,1
%
Similarly, from (2.2) and (2.5) we form
“:(D +D° )fd-(D4 +5(P-Q))cp] av(Q) = 0 (2.9)
0 147743 i i 2

and utilizing the divergence theorem and (2.1), (2.3), (2.4) and (2.6), we obtain

. o 4 4 4 4

©(P) = é[ ni[Dif .Bicp + TijGj - Tijuj] ds (Q) +
[ [D‘.a e .Gﬂ av() . (2.10)
dJ Ay L. 2t

Equations (2.85 and (2.10) constitute the Green's function (or tensor) form of
the equations of linear piezoelectricity. It turns out that in the sequel,
although we have great use for (2.8) we have no use for (2.10) because of the
particular type of perturbation problem of interest here.

Vibrational eigensolutions of the equations of linear piezoelectricity

satisfy an equation which may be written in the form

r n.(TH.uY—-TY,uH + D&wv-D?qH] ds = (w2-w ) r pu&u? av (2L}
[ 1 13 3 £ & v . 3

where the scripts p and v refer to the pth and vth eigensolutions, respectively.
It should be noted that (2.11) holds even if intermediate surfaces of discon-
tinuity exist. Clearly, from (2.11), for homogeneous boundary conditions, we

have

(2.12)

J pu?u; dav = N
\Y

2
(u)éuv 4




which is the orthogonality condition for piezoelectric vibrations. We now assume

o

that a complete set of eigensolutions ug and @ exists and define orthonormal

eigensolutions to our eigenvibration or eigenwave problem by

#=d, (2.13)

Ny o W)

: : m :
We now expand the mechanical displacement Green's tensor Gj and electric

potential Green's vector i in the forms

\_ Mj‘“g}L =), M &, (2.14)
i

u i

where gg and %“ constitute orthonormal solution functions satisfying the approp-

riate homogeneous form of (2.1) - (2.3) subject to the appropriate boundary

conditions. Substituting from (2.14) into (2.4), employing (2.6) and the homo-

geneous form of (2.4) for evexy W, contracting with g?, integrating over V and

utilizing (2.12), we obtain
2 2 ;
* q;(P)/(wu =) {2,15)

Substituting from (2.14) and (2.15) into (2.8), we obtain

0
g (P)
a m EE = : A
W= ) —— | ) i@ -ur @ 40, @) -8 @1 s @
m (U-)u-w ) g
Floe ; e ~l 5 il
+;|’ [Tij’ig’; ©) + Di,i€ (Q)]dV(Q)«\ : (2.16)

. g g 9
We may now obtain our perturbation procedure from (2.16) in the usual way ,

i.e,, by letting um(P) be very near one of the gg. say g;. Then we may write

2
L g;:;(P) + ;— d:l(P)Hu/(wJ- '02) 3 (2,17}
Wl

where

fn [leg“-u T, 4D, [ cp..)u“ds+ ] LT g +0$ ;T“-] av,  (2.18)

i g 356 ] & ol




and we have

i~
H /@] - 0%) =1, (2.19)

which is the equation for the first perturbation in eigenfrequency. If

A=w ~w (2.20)

from (2.19), we have

>
]

H, /2w, , (2.21)

for the first perturbation in eigenfrequency. If we let the phase velocity v
be written

S e (2.22)

then for constant wavenumber £ = §l, from (2.20) and (2.22), we have

e = 40/%,, (2.23)

for the perturbation in phase velocity. Furthermore, if we let

§=E 38, (2.24)
then for constant w = w5, from (2.22) - (2.24), we have
6 = A/Vl, (2.25) f

for the perturbation in wavenumber.

We have discussed first order perturbation theory only because that is all
we are interested in here. For a discussion of second and higher order perturba-
tion theory see Ref.9.

Although the perturbation theory developed here is only for purely real
perturbations of real eigenvalues, it may readily be formally generalized to
the case of purely imaginary perturbations of real eigenvalues. This formal
generalization is accomplished simply by requiring the Tij’ uj, Di and ¢ to be
imaginary while the dij’ g?, r& and f¥ are real in Ed. (2.18)., Then the Hu in

(2.18) is purely imaginary and the i is factored out before the integration is i

performed,




3. Attenuation Due to Air Loading

When the surface of the substrate is in contact with a fluid medium energy
is transmitted from the acoustic surface wave to the fluid. Since the fluid has
a much smaller mechanical impedance than the solid, the resulting attenuation can
readily be calculated by finding the steady wave induced in the fluid by the
small displacement at the surface of the substrate due to the known acoustic
surface wave propagating along a free surface and employing (2.25) with (2.21)
and (2.18). Since the fluid experiences small wave motion about a rest position,

we may employ the linear equations for the small motion of a viscous, compressible

9
fluidl , which may be written in the form
s
. = S
aBiy pauj 2 (94
where
2 a a a,a - a
=232 - =%, ¢ A : <%
iy S w0 3ROSRl e S, (2]

a a : £ s . :
and A7, B and pa are the modulus of compression, coefficient of viscosity and

a
k

ment vector of the fluid and 6ij is the Kronecker delta.

mass density of the fluid, u, denotes the components of the mechanical displace-

A solution satisfying the differential equations and boundary conditions

6,14,20,21

of linear piezoelectricity for acoustic surface waves may be written

in the form

4 > :
iB Ex_ i€ (x_ -wt)
u, = z e N T R 3
J J
m=1
4 iB Ex. if (x.-wt)
@ = E; C(m)iém)e 4 2e l P (3.3)
m=1

¢’

for propagation in the direction Xy with X, normal to the surface as shown in

Fig.1l. For a given set of boundary conditions, say traction~free and either

short circuit or open circuit electrical conditions, values of C(m), A;m),
K;m) and Bm are determined numerica11y6’l4’2o_22. These calculations have been




performed for various cuts of lithium niobate6'l4’22 and quartzzo'23 including

22,2 :
ST-cut gquartz ’ and are assumed known for purposes of this work.

Since the amplitude of the mechanical displacement u, in the substrate is

negligible compared to uy and u,, we ignore uy in the treatment of the fluid

and take the solution in the fluid in the form

2 o Ex_ i(Ex. -wt)
o z B(m)D(m)em 2e il

1 1 2
m=1
2 e
a Sx. 1i(&x. -wt)
s z LT R (3.4)
2 2 :
m=1

which satisfy (3.1), with (3.2), provided

; g 4 [ ! 2 (__4_. 3 2)'_&.\)_
1wu<x 3 1wu,)am + Llwu,(lwu.+ pav ) + (A 3 iwp pav Qh 7 1w
2

L 2 S 2] A 2y
<A iw 3) ] o+ [A 3 iwp pav [ iwp + pav ] =0, (B.5)
and
(m) ,_(m) _ e : o ; 2 2 5
D1 /02 = (A-1iwp/3) 1am/[h (diwp/3) + 1wu,am nav ] S (3.6)
where
V = w/§ . (3. 7)

For a given w and surface wave velocity V known from the aforementioned surface

6,14, 20-24

wave solutions ’ Eq. (3.5) is a biquadratic in am and yields four complex

roots. The two corresponding to propagation away from the substrate in the

x2-dircction are inserted in (3.4) and (3.6) for the solution. Moreover, these

two solution functions decay with respect to distance from the surface of the

! . s m ;
substrate in the x2—d1rect10n. The constants B( ) are determined from the wvalues

of uy and u, at the surface of the substrate, which is at x_, = 0. For the

solution in (3.4), the nontrivial components of the traction vector on planes

normal to x_, are given by
2 " g
ey e T e, T LR

21 2

’




10.

a . a : (a)
= (A + 3 + - 3 : 3.8
Ton ™ 4 2iwp/ )ul’1 A - diwp/ )uz’2 (3.8)
In applying Ed. (2.18) and evaluating the normalization factor N(M) i (2,12)
the integration is from the surface of the substrate at x_, = O to infinity with

2

respect to depth and over a wavelength of the acoustic surface wave. The

normalized acoustic surface wave eigensolution is given by

1 2L
gj = uj/Nl’ £ cp/Nl - (3.9)
where uj and ¢ are given in (3.3), and from (2.12) and (3.3) we have
X
4 4 (m)_ (m)_ (n)* (n)
o E e i (3.10)
172 g S B - 8*) : ;
> =1 n=1 m n

and " represents complex conjugate. The first perturbation of the eigenvalue
may now be calculated from (2.18), which takes the form
2n/§

a L a 1
L St I [ 91 * T22‘32] L USaty
o x2=0

because sz = 0 at X - 0 in the eigensolution in which the correct electrical
continuity conditions have been employed so that the electrical terms in (2.18)
cancel and the volumetric perturbation terms Tij and Di vanish identically in
this problem. 1In accordance with the discussion at the end of Section 2, wc now
substitute the real part of (3.9) and the imaginary part of (3.8) into (3.11),
factor out an i and perform the integration to obtain

2

o S “(m)[ : (m) - b R : (m)
Hl = lIm[-TT B (=iww Dl am+wu D2 )g1 + (i (A + 2iwp/3) D] +
m=1 x2=

(A - 4iwp/3) D?_(m)amm;] ] , (3.12)

> et
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1.

(m) (m)

because of the normalization N, in the

differ from the B 1

where the B
normalized surface wave solution which has been employed. The symbol Im denotes
the imaginary part of the complex quantity in brackets in (3.12). Note that
the real part of the complex quantity in brackets in (3.12) gives a small, rela-
tively unimportant, change in surface wave velocity which we do not bother to
present. The solution we have obtained can be improved by iterating in the
manner discussed in the next two sections, but the present result is sufficiently
accurate that it is not purposeful to iterate here.

When the viscosity p of the fluid is neglected only the normal components
of the mechanical displacement and traction force are continuous at the fric-
tionless interface and in this case the solution reduces considerably. First,
there is no sum in (3.4) because when u = 0 (3.5) yields only one root corre-
sponding to a wave propagating away from the substrate. Then one need only
eliminate the sum in (3.12) and set y = 0 wherever it occurs. Under these
circumstances H. reduces to the considerably simpler form

A

nt = imw?/8he,05/ 107780 - AT . (3.13)

Calculations have been performed for 6 as a function of freguency using
both (3.12) and (3.13) and the results are plotted in Fig.2. As can be seen from
the figure, with increasing frequency there is increasing deviation. At a fre-
quency of 1GHz, the attenuation calculated from (3.12) is in very close agreement
with the measurements of Szabo and Slobodnik11 and, of course, the attenuation
calculated from (3.13) is not. Bechmarm's25 constants for quartz were used in

the calculation. The constants employed for the air at standard temperature and

pressure (20°C and 1 atmosphere) ares’

= >«=14.22><1o4l2 , B =18.22 X 10 = . (3.14)
M

e i i




Similar calculations have been performed for lithium niobate, and the results
are plotted in Fig.3, which shows reasonable agreement with the measurements of H

Slobodniks. i

4. Velocity Dispersion Due to Thin Films

When a thin film of a different material is plated on a substrate the funda-

mental essentially Rayleigh type surface wave becomes dispersive. Moreover,

5 : . § 14,27 {
when the film is very thin compared with a wavelength, it has been shown "’ i

that approximate thin plate equations28 can be used with great accuracy to
treat the entire mechanical effect of the plating material as a boundary condi-
tion at the surxrface of the substrate. Both Skeie29 and Auld7 have used pertur-
bation equations to calculate the initial slope of the Rayleigh wave dispersion
curve due to a thin film. In this section we essentially repeat this calcula-
tion in order to emphasize the extreme accuracy with which the initial slope
of the dispersion curve due to a thin surface film can be determined by means
of perturbation theory. However, we go one step further and show how the equa-
tion for the first perturbation of the eigenvalue can be used iteratively to
calculate with great accuracy considerably more than the initial slope.

The aforementioned approximate plate equations for a thin isotropic film

plated on a substrate may be written in the form

/ '
T LI +u ] + 2n'p i, 4.1)

2 i / Ir/—___.
23 %= SR B L\x' +2u /a,ab * Ub,aa

’

where p', 2h’ and k', U are the mass density, thickness and Lamé constants,

respectively, for the film material, the subscripts a and b can take the

values 1 and 3 but not 2 and sz denotes the components of the traction vector

at the surface of the substrate, which may be obtained from (2.3). 1In this

application Eq. (2.18) takes the form




13
2m/§
1
S o .2
Hy J‘ [nggg o e
o x2=0

because the volumetric terms Tij and Di vanish identically, the boundary condi-
tions employed in the surface wave solutions are T;j = 0 and %1 =0and @ =0

in the conducting thin film. Substituting the real parts of (3.3) for the
electrically shorted case and (4.1) into (4.2), taking the uj in (4.1) to be
the normalized uj of the surface wave solution in (3.3) evaluated at the surface

of the substrate and performing the integration, we obtain

2 i 2 0, 2
Z /., A +u’) o'w) x p'w X (, Pw> .
L ] 1 e Moo 7 /919 - T 99, Y0 - )99, 4.3)
A +2u7) g -4 €
where
Y = 2h'€ | (4.4)

and the g; are the components of the normalized displacement vector uj at the
interface. The initial slope of the phase velocity dispersion curve for an
aluminum film on ST-cut quartz has been calculated from (4.3) and is plotted
in Fig.4 along with the correct curve. It is clear from the figure that the
agreement of the initial slopes is excellent,

If the phase velocity determined from (4.3), with (2.21) - (2.23), for a
small nonzero value of Y is inserted in the solution for ST-cut quart224‘25,
with the traction boundary conditions in (4.1) replacing the traction free
conditions employed in the treatments, the system resulting from the differ-
ential equations may readily be solved for the four Bm and the accompanying
amplitude ratios A;m) and then the system resulting from any two of the three
traction boundary conditions along with the condition of vanishing potential

(L) :C(Z) :0(3) :C(4).

may readily be solved for the amplitude ratios C The

resulting solution may then be employed in (2.18), which now takes the form
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AL szuj] dx, , (4.5)

to calculate a value of phase velocity at a nonzero value of Y. Equation (4.5)
may then be used iteratively to calculate the phase velocity at a given value

of Y to any desired degree of accuracy, subject only to the limitations inherent
in (4.1). To this end we substitute the real parts of (3.3) for the electric-

ally shorted case, (4.1) for sz and

1 E 1 1 ,
- + .
Ta3 = C23x%%, ¢ ¥ k23% x W5
into (4.5), take uj as before and perform the integration to obtain
( 7 P u)2\’ 1 1% i 1 * 1
== Ty - f— 4.7
M i ¢2/%3%3 tar WyToy ¥ %3la) Bt

where it has been assumed that the one boundary condition that has not been
satisfied exactly is the condition on the traction T23. For nonzero Y Eq. (4.7)
may now be used iteratively to calculate the phase velocity to any desired
degree of accuracy. The phase velocity dispersion curve for an aluminum film
on ST-cut quartz has been calculated in this manner, and the resulting curve is
indistinguishable from the correct curve shown in Fig.4. Similarly, the phase
velocity dispersion curve for an aluminum film on Y-Z lithium niobate has been

calculated and the results are plotted in Fig.5.

5. Attenuation Due to the Electrical Conductivity of Thin Films

When a thin conducting film is plated on the surface of a piezoelectric
substrate carrying an acoustic surface wave, the attendant electric field causes
currents to flow in the film. Since the film is thin compared with a wavelength,
the full electrical conduction equations and associated boundary conditions need

not be satisfied for the film and an approximate thin plate conductivity

.“4,_ .
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equation can be obtained as noted in the Introduction. If we assume that the
electric potential essentially does not vary across the thickness of the thin
isotropic film and that the electric field Ei is derivable from the electric

potential ¢ in the usual way, i.e., by
(5.1)

then application of the conservation of charge to the element of plate shown

in Fig.6 yields

2h'§NaJads +Jf> ds = 0

. ; (5.2)
(& A

where Na denotes the components of the unit normal in the plane and Ja denotes

the components of the current in the plane. Substituting from Ohm's law

Jy ™ OB, (5.3)

(5.1) and employing the divergence theorem in the plane, we obtain

] -
-2h c@’aa +D, =0, (5.4)

where ¢ is the electrical conductivity and D, may be determined from (..i*)1
and the surface wave solution functions in (3.3). Substituting from (3.3)

into (5.4), we obtain

(0) = iwp, (0)/2n0E% | (5.5)

where the notation (0) means evaluated at x2 = 0, and the quantity 2h’o is
called the sheet conductivity of the thin surface film.
Even though we can readily include the mechanical influence of the film

by means of Eq. (4.1), in this section we ignore this mechanical effect for

reasons of expediency. Under these circumstances Eq. (2.18) takes the form
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2n/§g

r ~1 17
Hy=- | [sz - .52_1 ax, (5.6)
o x2=0

because the volumetric terms Tfj and Di vanish identically and the mechanical
terms have been ignored. At this point it should be noted that had the mech-
anical terms been included, Eq. (5.6) would have resulted anyway if the correct
dispersive surface wave solution were employed because then (4.1) would be

used for both sz and T;j in (2.18). However, we do not bother with this
refinement here. For future use we note that the complex equation (5.5) yields

the purely real and purely imaginary equations

9(0) +¢"(0) = —— (©,(0) - D}(0)), (5.7)
2h'0Eg
w

©(0) - ©*(0) = ;—ht—g (D, (0) + D;(O)), (5.8)
o}

which we will have occasion to use separately in the sequel.

Since we are interested in obtaining results over an extremely large range
of values of sheet conductivity 2h‘c, we must perturb from the short circuit
solution for large values of sheet conductivity and the open circuit solution
for small values of sheet conductivity. To this end we first perturb from the
short circuit surface wave eigensolution, in which %l = 0, and in accordance

with the discussion at the end of Section 2, consider a purely imaginary Hl.

in which case (5.6) takes the form
2/8

=

1
H --4— (5.9)

¥ Al
1 @ -9 )&, +5)) ax

0 t—

Substituting from (5.8) into (5.9) and performing the integration, we obtain

B, = (iwn/zh'o§3)5;<0)3;*(o> . (5.10)
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where

P = 1 R (5.11)
2 b4

The attenuation calculated from (5.10) at a frequency of 100 MHz for ST-cut
quartz is plotted as the curve marked short~circuit in Fig.7. This curve is
valid for extremely large values of sheet conductivity only, which happens to

be the region of practical interest. For somewhat smaller values of sheet con-
ductivity, a considerably more accurate value of attenuation may be obtained in
the following manner. First the corrected eigenvalue, including the determined
time attenuation as well as the phase velocity, may be substituted in the system
resulting from the solution of the piezoelectric differential equations, which

may then readily be solved for the four Bm and the accompanying amplitude

(m)

ratios Aj . Then the linear algebraic equations resulting from the three
traction boundary conditions may be solved for the amplitude ratios C(l):C(R):
C(3): C(q). The resulting sclution may then be employed in (5.6), which for a
purely imaginary H{ we take in the form
211/§
Hi =% f [(tp-tp*)(:ﬁi+3f) = (D;—Dz)(%l+%l*)] ax, , (5.12)
o

in order that the iterative perturbation procedure tend to satisfy the boundary

condition (5.5), i.e., in order that Hi vanish for the exact solution that

satisfies (5.5). For a purely real H?, (5.6) takes the form
21/§
R 1 F % 31 Al x. A1 Alx]
- - ‘ 5.13
By == f | @+97) @, +8 ) = (D, +D,) (£ +£7 ) | dx, ( )
o

1

Substituting from (5.8) into (5.12) and (5.7) into (5.13) and performing the

integrations, we obtain
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iwrr PR m a1l o
L = ~ 5.14
Hy — IS5, >F (f 02 sz )5 (5.14)
2h ‘O€ +
R i3 SRy I 1%
= - — BedD
Hy 7€ (f D, + sz ¥ 5 (515}

ey o 5 4
where D, is to be taken to be the same as ﬁé given in (5.11). Equation (5.14)
determines the change in attenuation from any given state and Eq. (5.15) deter-
mines the change in phase velocity or frequency from any given state. Equa-

tions (5.14) and (5.15) may now be used iteratively to calculate the attenuation

and phase velocity to any desired degree of accuracy as long as the attenuation
is not too large. The attenuation calculated in the foregoing manner at a
frequency of 100 MHz for ST-~cut quartz yields the curve below the short-circuit
curve in Fig.7. The iterated attenuation calculation does not converge for
values of sheet conductivity lower than the value at which the solid curve ends.
We believeAthat this difficulty arises because the perturbation procedure we
employ is for perturbations off real eigenvalues only, and in the region in
which we cannot perform the calculation the attenuation is too large for the
eigenvalue to be treated as approximately real for the accuracy required,

We now perturb from the open~circuit surface wave eigensolution, in which

i 5

i5p il "
-/2 = €o§f ’ (516 )
by considering a purely imaginary ”1 in (5.6) which, with (5.16) takes the form
2n/§
ik i | i * * 1 sl Al%] ‘ =i
By =% ] [t StW9) - Do~uy il T 42 Jd,\l. (5.17)
o

’ " A g Al : .
Substituting from (5.7) into (5.17), taking ¢ to be f  and performing the inte-

gration, we obtain

N ] "l AlX
Hl = (ifn2h'c/w)f (0~ (0) . (5.18}




The attenuation calculated from (5.18) at a frequency of 100 MHz for ST-cut
quartz is plotted as the curve marked open-circuit gn Fig.7. This curve is
valid for relatively small values of sheet conductivity only. For somewhat
larger values of sheet conductivity, a more accurate value of attenuation is
obtained by using the corrected eigenvalue in the governing equations in the
manner set forth in the short-circuit case and employing the resulting solution

in (5.12) and (5.13), respectively, while substituting from (5.7) into (5.12)

and (5.8) into (5.13) and performing the integrations to obtain
S ~ A
I _ 2h oing flfl* NI
w
L5 "
H = 7€ (qig +

Equations (5.19) and (5.20) may now be used iteratively to calculate the atten-
uation and phase velocity, respectively, to any desired degree of accuracy as
long as the attenuation is not too large. The attenuation calculated in the
foregoing manner at a frequency of 100 MHz for ST-cut quartz yields the curve
below the open-circuit curve in Fig.7. This time the iterated attenuation
calculation does not converge for values of sheet conductivity higher than the
value at which the solid curve ends, and the reasons for this are the same as
those discussed earlier in the short-circuit case. Similar calculations have

been performed for ¥-Z lithium niobate and the results are plotted in Fig.8,
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FIGURE CAPTIONS

Diagram Showing the Free Surface of a Semi-infinite Solid

Attenuation of Surface Waves on ST-Cut Quartz due to Air
Loading at Standard Temperature and Pressure (a) with and
(b) without Fluid Viscosity. The dot is the value measured
by Szabo and Slobodnik'? .

Attenuation of Surface Waves on Y-Z Lithium Niobate due to

Air Loading at Standard Temperature and Pressure (a) with and

(b) without Fluid Viscosity. The dot is the value measured
.5

by Slobodnik™ .

Lowest Straight-Crested Phase Velocity Dispersion Curve for
an Aluminum Film on ST-Cut Quartz

Lowest Straight-Crested Phase Velocity Dispersion Curve for
an Aluminum Film on Y-Z Lithium Niobate

Diagram Showing an Arbitrary Element of the Thin Conducting
Film

Attenuation of Surface Waves on ST-Cut Quartz due to Thin
Conducting Films as a Function of Sheet Conductivity at a
Frequency of 100 MHz

Attenuation of Surface Waves on Y-Z Lithium Niobate due to
Thin Conducting Films as a Function of Sheet Conductivity at
a Frequency of 100 MHz
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